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Today’s Topic

• Normalizing Flow
• A generative model class that has the best sampling and likelihood properties

• Score-based generative model
• A different framework to tackle general energy-based models
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Latent Variable Model (Recap)

• 𝑝𝑝 𝑥𝑥, 𝑧𝑧 = 𝑝𝑝 𝑧𝑧 𝑝𝑝(𝑥𝑥|𝑧𝑧)
• Given 𝑧𝑧, we use 𝑝𝑝(𝑥𝑥|𝑧𝑧) to generate 𝑥𝑥 for a consistent probability distribution
• Hard to estimate the exact likelihood 𝑝𝑝 𝑥𝑥 = ∫𝑧𝑧 𝑝𝑝 𝑥𝑥 𝑧𝑧 𝑝𝑝(𝑧𝑧)
• Variational inference by ELBO

• Can we simply the generation process?
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A Simplified Generation Process

• 𝑝𝑝 𝑥𝑥, 𝑧𝑧 = 𝑝𝑝 𝑧𝑧 𝑝𝑝(𝑥𝑥|𝑧𝑧)
• Given 𝑧𝑧, we use 𝑝𝑝(𝑥𝑥|𝑧𝑧) to generate 𝑥𝑥 for a consistent probability distribution
• Hard to estimate the exact likelihood 𝑝𝑝 𝑥𝑥 = ∫𝑧𝑧 𝑝𝑝 𝑥𝑥 𝑧𝑧 𝑝𝑝(𝑧𝑧)
• Variational inference by ELBO

• Can we simply the generation process?
• We can directly apply a deterministic process 𝑓𝑓: 𝑧𝑧 → 𝑥𝑥
• E.g., 𝑧𝑧~𝑁𝑁(0, 𝐼𝐼) and 𝑥𝑥 = 𝑓𝑓(𝑧𝑧)

• 𝑥𝑥~𝑁𝑁(𝜇𝜇, 𝜎𝜎2) is equivalent to 𝑧𝑧~𝑁𝑁 0,1 , 𝑥𝑥 = 𝜇𝜇 + 𝜎𝜎 ⋅ 𝑧𝑧
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A Simplified Generation Process

• 𝑝𝑝 𝑥𝑥, 𝑧𝑧 = 𝑝𝑝 𝑧𝑧 𝑝𝑝(𝑥𝑥|𝑧𝑧)
• Given 𝑧𝑧, we use 𝑝𝑝(𝑥𝑥|𝑧𝑧) to generate 𝑥𝑥 for a consistent probability distribution
• Hard to estimate the exact likelihood 𝑝𝑝 𝑥𝑥 = ∫𝑧𝑧 𝑝𝑝 𝑥𝑥 𝑧𝑧 𝑝𝑝(𝑧𝑧)
• Variational inference by ELBO

• Can we simply the generation process?
• We can directly apply a deterministic process 𝑓𝑓: 𝑧𝑧 → 𝑥𝑥
• E.g., 𝑧𝑧~𝑁𝑁(0, 𝐼𝐼) and 𝑥𝑥 = 𝑓𝑓(𝑧𝑧)

• Can we make the likelihood 𝑝𝑝(𝑥𝑥) tractable?
• So that we can directly run MLE for training …
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1-D Example

• Goal: design 𝑥𝑥 = 𝑓𝑓(𝑧𝑧; 𝜃𝜃) s.t.
• Assume 𝑧𝑧 is from an “easy” distribution
• 𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑓𝑓(𝑧𝑧; 𝜃𝜃) has a tractable likelihood

• Uniform: 𝑧𝑧~unif (0,1)
• Density 𝑝𝑝 𝑧𝑧 = 1
• 𝑥𝑥 = 2𝑧𝑧 + 1, then 𝑝𝑝 𝑥𝑥 =?

𝑓𝑓:ℝ → ℝ, 𝑓𝑓 𝑧𝑧 = 2𝑧𝑧 + 1

p(x)

p(z)

x

z
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1-D Example

• Goal: design 𝑥𝑥 = 𝑓𝑓(𝑧𝑧; 𝜃𝜃) s.t.
• Assume 𝑧𝑧 is from an “easy” distribution
• 𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑓𝑓(𝑧𝑧; 𝜃𝜃)  has a tractable likelihood

• Uniform: 𝑧𝑧~unif (0,1)
• Density 𝑝𝑝 𝑧𝑧 = 1
• 𝑥𝑥 = 2𝑧𝑧 + 1, then 𝑝𝑝 𝑥𝑥 = 1

2
• 𝑥𝑥 = 𝑎𝑎 ⋅ 𝑧𝑧 + 𝑏𝑏, then 𝑝𝑝 𝑥𝑥 = 1/|𝑎𝑎| (for 𝑎𝑎 ≠ 0)

• General 1-D case: 𝑥𝑥 = 𝑓𝑓(𝑧𝑧), 𝑝𝑝 𝑥𝑥 =?
• Assume 𝑓𝑓 𝑧𝑧  is a bijection

𝑓𝑓:ℝ → ℝ, 𝑓𝑓 𝑧𝑧 = 2𝑧𝑧 + 1

p(x)

p(z)

x

z
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1-D Example

• Goal: design 𝑥𝑥 = 𝑓𝑓(𝑧𝑧; 𝜃𝜃) s.t.
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• 𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑓𝑓(𝑧𝑧; 𝜃𝜃)  has a tractable likelihood

• Uniform: 𝑧𝑧~unif (0,1)
• Density 𝑝𝑝 𝑧𝑧 = 1
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• 𝑥𝑥 = 𝑎𝑎 ⋅ 𝑧𝑧 + 𝑏𝑏, then 𝑝𝑝 𝑥𝑥 = 1/|𝑎𝑎| (for 𝑎𝑎 ≠ 0)

• General 1-D case: 𝑥𝑥 = 𝑓𝑓(𝑧𝑧), then 𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑧𝑧 𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

• Assume 𝑓𝑓(𝑧𝑧) is a bijection
• 𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑝𝑝 𝑧𝑧 𝑑𝑑𝑧𝑧
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1-D Example

• Goal: design 𝑥𝑥 = 𝑓𝑓(𝑧𝑧; 𝜃𝜃) s.t.
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• 𝑥𝑥 = 𝑎𝑎 ⋅ 𝑧𝑧 + 𝑏𝑏, then 𝑝𝑝 𝑥𝑥 = 1/|𝑎𝑎| (for 𝑎𝑎 ≠ 0)

• General 1-D case: 𝑥𝑥 = 𝑓𝑓(𝑧𝑧), then 𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑧𝑧 𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

= 𝑓𝑓′ 𝑧𝑧 −1𝑝𝑝(𝑧𝑧)
• Assume 𝑓𝑓(𝑧𝑧) is a bijection
• 𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑝𝑝 𝑧𝑧 𝑑𝑑𝑧𝑧

𝑓𝑓:ℝ → ℝ, 𝑓𝑓 𝑧𝑧 = 2𝑧𝑧 + 1
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2-D Example

• Goal: design 𝑥𝑥 = 𝑓𝑓(𝑧𝑧; 𝜃𝜃) s.t.
• Assume 𝑧𝑧 is from an “easy” distribution
• 𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑓𝑓(𝑧𝑧; 𝜃𝜃)  has a tractable likelihood

• Uniform: 𝑧𝑧 = [𝑧𝑧1, 𝑧𝑧2]~unif 0,1 × 0,1
• Density 𝑝𝑝 𝑧𝑧 = 1
• 𝑥𝑥 = 𝐴𝐴𝐴𝐴, then 𝑝𝑝 𝑥𝑥 =?

• 𝐴𝐴 = 𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑
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2-D Example

• Goal: design 𝑥𝑥 = 𝑓𝑓(𝑧𝑧; 𝜃𝜃) s.t.
• Assume 𝑧𝑧 is from an “easy” distribution
• 𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑓𝑓(𝑧𝑧; 𝜃𝜃)  has a tractable likelihood

• Uniform: 𝑧𝑧 = [𝑧𝑧1, 𝑧𝑧2]~unif 0,1 × 0,1
• Density 𝑝𝑝 𝑧𝑧 = 1
• 𝑥𝑥 = 𝐴𝐴𝐴𝐴, then 𝑝𝑝 𝑥𝑥 =?

• 𝐴𝐴 = 𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑

• 𝑧𝑧 is mapped to a parallelogram
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2-D Example

• Goal: design 𝑥𝑥 = 𝑓𝑓(𝑧𝑧; 𝜃𝜃) s.t.
• Assume 𝑧𝑧 is from an “easy” distribution
• 𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑓𝑓(𝑧𝑧; 𝜃𝜃)  has a tractable likelihood

• Uniform: 𝑧𝑧 = [𝑧𝑧1, 𝑧𝑧2]~unif 0,1 × 0,1
• Density 𝑝𝑝 𝑧𝑧 = 1
• 𝑥𝑥 = 𝐴𝐴𝐴𝐴, then 𝑝𝑝 𝑥𝑥 = 1/𝑆𝑆

• 𝐴𝐴 = 𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑

• 𝑧𝑧 is mapped to a parallelogram
• 𝑆𝑆 = |𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏|, the area
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2-D Geometry

• The area of the parallelogram is equivalent to the determinant of 𝐴𝐴
det 𝐴𝐴 = det 𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑 = 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

• For any linear transformation 𝑥𝑥 = 𝐴𝐴𝐴𝐴 + 𝑏𝑏
• The following holds (for space of any dimensions)

𝑝𝑝 𝑥𝑥 = det 𝐴𝐴 −1 ⋅ 𝑝𝑝(𝑧𝑧)
• Remark: 𝐴𝐴 has a full rank! (bijection)

• More general cases: the change of variable 

Lecture 7, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/30 Copyright @ IIIS, Tsinghua University 14

De
ep
 L
ea
rn
in
g,
 S
pr
in
g 
20
25
 

II
IS
, 
Ts
in
gh
ua
 U
ni
ve
rs
it
y



Change of Variable

• Suppose 𝑥𝑥 = 𝑓𝑓(𝑧𝑧) w.r.t. a general non-linear 𝑓𝑓(⋅)
• the linearized change in volume is determined by the Jacobian of 𝑓𝑓(⋅)

𝜕𝜕𝜕𝜕 𝑧𝑧
𝜕𝜕𝜕𝜕

=

𝜕𝜕𝑓𝑓1 𝑧𝑧
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕𝑓𝑓1 𝑧𝑧
𝜕𝜕𝑧𝑧𝑑𝑑

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑 𝑧𝑧
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕𝑓𝑓𝑑𝑑 𝑧𝑧
𝜕𝜕𝑧𝑧𝑑𝑑

• Given a bijection 𝑓𝑓 𝑧𝑧 :ℝ𝑑𝑑 →  ℝ𝑑𝑑

• 𝑧𝑧 = 𝑓𝑓−1(𝑥𝑥)

𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑓𝑓−1 𝑥𝑥 det
𝜕𝜕𝑓𝑓−1 𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑝𝑝(𝑧𝑧) det
𝜕𝜕𝑓𝑓−1 𝑥𝑥
𝜕𝜕𝑥𝑥

Lecture 7, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/30 Copyright @ IIIS, Tsinghua University 15

De
ep
 L
ea
rn
in
g,
 S
pr
in
g 
20
25
 

II
IS
, 
Ts
in
gh
ua
 U
ni
ve
rs
it
y



Change of Variable

• Suppose 𝑥𝑥 = 𝑓𝑓(𝑧𝑧) w.r.t. a general non-linear 𝑓𝑓(⋅)
• the linearized change in volume is determined by the Jacobian of 𝑓𝑓(⋅)

𝜕𝜕𝜕𝜕 𝑧𝑧
𝜕𝜕𝜕𝜕

=

𝜕𝜕𝑓𝑓1 𝑧𝑧
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕𝑓𝑓1 𝑧𝑧
𝜕𝜕𝑧𝑧𝑑𝑑

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑 𝑧𝑧
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕𝑓𝑓𝑑𝑑 𝑧𝑧
𝜕𝜕𝑧𝑧𝑑𝑑

• Given a bijection 𝑓𝑓 𝑧𝑧 :ℝ𝑑𝑑 →  ℝ𝑑𝑑

• 𝑧𝑧 = 𝑓𝑓−1(𝑥𝑥)

𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑓𝑓−1 𝑥𝑥 det
𝜕𝜕𝑓𝑓−1 𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑝𝑝(𝑧𝑧) det
𝜕𝜕𝑓𝑓−1 𝑥𝑥
𝜕𝜕𝑥𝑥

• Since 𝜕𝜕𝑓𝑓
−1

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

−1
 (Jacobian of invertible function)

𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑧𝑧 det
𝜕𝜕𝑓𝑓 𝑧𝑧
𝜕𝜕𝑧𝑧

−1

= 𝑝𝑝 𝑧𝑧 det
𝜕𝜕𝜕𝜕 𝑧𝑧
𝜕𝜕𝑧𝑧

−1
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Change of Variable

• Suppose 𝑥𝑥 = 𝑓𝑓(𝑧𝑧) w.r.t. a general non-linear 𝑓𝑓(⋅)
• the linearized change in volume is determined by the Jacobian of 𝑓𝑓(⋅)
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⋯
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⋯
𝜕𝜕𝑓𝑓𝑑𝑑 𝑧𝑧
𝜕𝜕𝑧𝑧𝑑𝑑

• Given a bijection 𝑓𝑓 𝑧𝑧 :ℝ𝑑𝑑 →  ℝ𝑑𝑑

• 𝑧𝑧 = 𝑓𝑓−1(𝑥𝑥)

𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑓𝑓−1 𝑥𝑥 det
𝜕𝜕𝑓𝑓−1 𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑝𝑝(𝑧𝑧) det
𝜕𝜕𝑓𝑓−1 𝑥𝑥
𝜕𝜕𝑥𝑥

• Since 𝜕𝜕𝑓𝑓
−1

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

−1
 (Jacobian of invertible function)

𝑝𝑝 𝑥𝑥 = 𝑝𝑝 𝑧𝑧 det
𝜕𝜕𝑓𝑓 𝑧𝑧
𝜕𝜕𝑧𝑧

−1

= 𝑝𝑝 𝑧𝑧 det
𝜕𝜕𝜕𝜕 𝑧𝑧
𝜕𝜕𝑧𝑧

−1
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Normalizing Flow

• Idea
• Sample 𝑧𝑧0 from an “easy” distribution, i.e., a standard Gaussian
• Apply 𝐾𝐾 bijections 𝑧𝑧𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑧𝑧𝑖𝑖−1) 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾
• The final sample 𝑥𝑥 = 𝑓𝑓𝐾𝐾(𝑧𝑧𝐾𝐾) has tractable density

• Normalizing Flow
• 𝑧𝑧0 ∼ 𝑁𝑁 0, 𝐼𝐼 , 𝑧𝑧𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑧𝑧𝑖𝑖−1 , 𝑥𝑥 = 𝑧𝑧𝐾𝐾 where 𝑥𝑥, 𝑧𝑧𝑖𝑖 ∈ ℝ𝑑𝑑 & 𝑓𝑓𝑖𝑖  is invertible
• Every revertible function produces a normalized density function

• 𝑝𝑝 𝑧𝑧𝑖𝑖 = 𝑝𝑝 𝑧𝑧𝑖𝑖−1 det 𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖−1

−1
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Normalizing Flow

• Idea
• Sample 𝑧𝑧0 from an “easy” distribution, i.e., a standard Gaussian
• Apply 𝐾𝐾 bijections 𝑧𝑧𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑧𝑧𝑖𝑖−1) 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾
• The final sample 𝑥𝑥 = 𝑓𝑓𝐾𝐾(𝑧𝑧𝐾𝐾) has tractable density

• Normalizing Flow
• 𝑧𝑧0 ∼ 𝑁𝑁 0, 𝐼𝐼 , 𝑧𝑧𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑧𝑧𝑖𝑖−1 , 𝑥𝑥 = 𝑧𝑧𝐾𝐾 where 𝑥𝑥, 𝑧𝑧𝑖𝑖 ∈ ℝ𝑑𝑑 & 𝑓𝑓𝑖𝑖  is invertible
• Every revertible function produces a normalized density function

• 𝑝𝑝 𝑧𝑧𝑖𝑖 = 𝑝𝑝 𝑧𝑧𝑖𝑖−1 det 𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖−1

−1
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Normalizing Flow

• Generation is trivial
• Sample 𝑧𝑧0, then apply the transformations

• Log-Likelihood
log 𝑝𝑝 𝑥𝑥 = log 𝑝𝑝 𝑧𝑧𝐾𝐾−1 − log det

𝜕𝜕𝑓𝑓𝐾𝐾
𝜕𝜕𝑧𝑧𝐾𝐾−1

…

log 𝑝𝑝 𝑥𝑥 = log 𝑝𝑝 𝑧𝑧0 −�
𝑖𝑖

log det
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖−1

Lecture 7, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/30 Copyright @ IIIS, Tsinghua University 20

De
ep
 L
ea
rn
in
g,
 S
pr
in
g 
20
25
 

II
IS
, 
Ts
in
gh
ua
 U
ni
ve
rs
it
y



Normalizing Flow

• Generation is trivial
• Sample 𝑧𝑧0, then apply the transformations

• Log-Likelihood
log 𝑝𝑝 𝑥𝑥 = log 𝑝𝑝 𝑧𝑧𝐾𝐾−1 − log det

𝜕𝜕𝑓𝑓𝐾𝐾
𝜕𝜕𝑧𝑧𝐾𝐾−1

…

log 𝑝𝑝 𝑥𝑥 = log 𝑝𝑝 𝑧𝑧0 −�
𝑖𝑖

log det
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖−1Gaussian density
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Normalizing Flow

• Generation is trivial
• Sample 𝑧𝑧0, then apply the transformations

• Log-Likelihood
log 𝑝𝑝 𝑥𝑥 = log 𝑝𝑝 𝑧𝑧𝐾𝐾−1 − log det

𝜕𝜕𝑓𝑓𝐾𝐾
𝜕𝜕𝑧𝑧𝐾𝐾−1

…

log 𝑝𝑝 𝑥𝑥 = log 𝑝𝑝 𝑧𝑧0 −�
𝑖𝑖

log det
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖−1

𝑶𝑶 𝒅𝒅𝟑𝟑 !
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Normalizing Flow

• Naïve flow model requires extremely expensive computation
• Determinant of a 𝑑𝑑 × 𝑑𝑑 matrix

• Idea
• Design a good bijection 𝑓𝑓𝑖𝑖(𝑧𝑧) such that the determinant is easy to compute

• Technical Keys
• Bijection

• Randomly constructed matrices are typically full-rank
• Structured Jacobian

• Desired Jacobian structures for fast determinant computation
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Triangular Jacobian

• Given 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝑓𝑓 𝑧𝑧 = (𝑓𝑓1 𝑧𝑧 , … , 𝑓𝑓𝑑𝑑(𝑧𝑧))

𝐽𝐽 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑧𝑧𝑑𝑑

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑧𝑧𝑑𝑑

• Suppose 𝑥𝑥𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑧𝑧) only depends on 𝑧𝑧≤𝑖𝑖, then

det 𝐽𝐽 = det
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= det

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑧𝑧1

⋯ 0

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑧𝑧1

⋯
𝜕𝜕𝑓𝑓𝑑𝑑
𝜕𝜕𝑧𝑧𝑑𝑑

= det diag(𝐽𝐽) = �
𝑖𝑖

𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖
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NICE

• Nonlinear Independent Components Estimation (Dinh et. al, 2014)
• 𝑧𝑧 = 𝑓𝑓(𝑥𝑥)

• Notational convention for MLE learning
• we partition 𝑥𝑥 into two disjoint subsets 𝑥𝑥1:𝑚𝑚 and 𝑥𝑥𝑚𝑚+1:𝑑𝑑 for any 1 ≤ 𝑚𝑚 ≤ 𝑑𝑑
• Forward pass 𝑥𝑥 → 𝑧𝑧 (inference)

• 𝑧𝑧1:𝑚𝑚 = 𝑥𝑥1:𝑚𝑚 (identity)
• 𝑧𝑧𝑚𝑚+1:𝑑𝑑 = 𝑥𝑥𝑚𝑚+1:𝑑𝑑 + 𝜇𝜇𝜃𝜃 𝑥𝑥1:𝑚𝑚  (𝜇𝜇𝜃𝜃 is a neural network)

• Backward pass 𝑧𝑧 → 𝑥𝑥 (sampling)
• 𝑥𝑥1:𝑚𝑚 = 𝑧𝑧1:𝑚𝑚 (identity)
• 𝑥𝑥𝑚𝑚+1:𝑑𝑑 = 𝑧𝑧𝑚𝑚+1:𝑑𝑑 − 𝜇𝜇𝜃𝜃(𝑧𝑧1:𝑚𝑚)

• Volume preserving transformation
• det 𝐽𝐽 = 1

𝐽𝐽 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐼𝐼𝑚𝑚 0
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥1:𝑚𝑚
𝐼𝐼𝑑𝑑−𝑚𝑚
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NICE

• Coupling layers are introduced to ensure all dimensions are covered
• Reverse (or randomly shuffle) the partition before each transformation layer

• First layer of NICE uses a re-scaling layer
• 𝑧𝑧𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖
• Ensure non-unit volume transformation
• Jacobian of forward pass 

𝐽𝐽 = diag(𝑆𝑆)

det 𝐽𝐽 = �
𝑖𝑖

𝑆𝑆𝑖𝑖𝑖𝑖
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NICE

• Generation Results
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NICE

• Inpainting
• 𝑥𝑥 = (𝑥𝑥𝑣𝑣, 𝑥𝑥ℎ)
• We have tractable likelihood function 𝑝𝑝(𝑥𝑥𝑣𝑣, 𝑥𝑥ℎ)! 

• Gradient ascent (stochastic gradient MCMC if you want samples)
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Real-NVP

• NICE: most layers maintain an unchanged volume
• Non-volume preserving extension of NICE (Dinh et al, 2016)

• Two partitions over 𝑧𝑧: 𝑧𝑧1:𝑚𝑚 and 𝑧𝑧𝑚𝑚+1:𝑑𝑑  for any 1 ≤ 𝑚𝑚 ≤ 𝑑𝑑
• Forward pass 𝑥𝑥 → 𝑧𝑧 (inference)

• 𝑧𝑧1:𝑚𝑚 = 𝑥𝑥1:𝑚𝑚 (identity)
• 𝑧𝑧𝑚𝑚+1:𝑑𝑑 = 𝑥𝑥𝑚𝑚+1:𝑑𝑑 ⋅ exp 𝛼𝛼𝜃𝜃(𝑥𝑥1:𝑚𝑚) + 𝜇𝜇𝜃𝜃(𝑥𝑥1:𝑚𝑚) (𝜇𝜇𝜃𝜃 & 𝛼𝛼𝜃𝜃 are neural networks)

• Backward pass 𝑧𝑧 → 𝑥𝑥 (sampling)
• 𝑥𝑥1:𝑚𝑚 = 𝑧𝑧1:𝑚𝑚 (identity)
• 𝑥𝑥𝑚𝑚+1:𝑑𝑑 = 𝑧𝑧𝑚𝑚+1:𝑑𝑑 − 𝜇𝜇𝜃𝜃 𝑧𝑧1:𝑚𝑚 ⋅ exp −𝛼𝛼𝜃𝜃(𝑥𝑥1:𝑚𝑚)

• Non-volume preserving transformation

det 𝐽𝐽 = �
𝑖𝑖=𝑚𝑚+1

𝑑𝑑

exp 𝛼𝛼𝜃𝜃 𝑥𝑥1:𝑚𝑚 𝑖𝑖
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Real-NVP

• Generation Results
• Left: training data; Right: generated samples
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Real-NVP

• Explore the latent space
• 4 samples selected: 𝑧𝑧0, 𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, two interpolation parameters 𝛼𝛼, 𝛽𝛽
• 𝑧𝑧 = cos 𝛼𝛼 cos( 𝛽𝛽 𝑧𝑧1 + sin 𝛽𝛽 𝑧𝑧2) + sin(𝛼𝛼)(cos 𝛽𝛽 𝑧𝑧3 + sin 𝛽𝛽 𝑧𝑧4)
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Real-NVP

• Fun Fact
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GLOW

• Limited expressiveness of previous coupling layers
• But a general non-linear transformation can be too expensive…

• Generative Flow with Invertible 1x1 Convolutions (Kingma et al. 2018)
• Input: 𝑥𝑥 = ℎ × 𝑤𝑤 × 𝑐𝑐 (height, width, channel) (assume 𝑐𝑐 is small)
• Key idea: introduce 1x1 convolutions when channel size is small
• 1x1 conv: a linear transformation for each feature map location

• Forward mapping: 𝑧𝑧𝑖𝑖𝑖𝑖: = 𝑊𝑊𝑥𝑥𝑖𝑖𝑖𝑖: + 𝑏𝑏
• Inverse mapping: simply compute the inverse matrix of 𝑊𝑊

• Computation 𝑂𝑂 𝑐𝑐3
• log det 𝐽𝐽 = ℎ ⋅ 𝑤𝑤 ⋅ log | det𝑊𝑊 |

• Also use normalization layer to stabilizing training
• Architecture details can be found in the paper
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GLOW 

• Generation Results
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Normalizing Flow: Summary

• Key Ideas
• Generation by iteratively transforming a simple distribution
• Invertible transformation for tractable likelihood 

• Enable straightforward MLE learning
• Design principle

• Apply non-linear transformations with easy-to-compute Jacobian determinants

• Pros & Cons
• Easy sampling & training via deterministic transformation from a simple 

distribution
• Most restricted network structure (trade expressiveness for tractability)

• Architecture, dimensionality, etc.
• Most suitable for the use cases where tractability is a must
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Today’s Topic

• Normalizing Flow
• A generative model class that has the best sampling and likelihood properties

• Score-based generative model
• A different framework to tackle general energy-based models
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Today’s Topic

• Normalizing Flow
• A generative model class that has the best sampling and likelihood properties

• Score-based generative model
• A different framework to tackle general energy-based models
• The model class that has the best generation quality
• It is also called the diffusion model
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Why Diffusion Model?

Dall-E 3
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Why Diffusion Model?

Stable Diffusion Model (SD3)
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Why Diffusion Model?

Midjourney
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Why Diffusion Model?

• AI-generated photo wins the award
• Jason Allen’s A.I.-generated work, 

“Théâtre D’opéra Spatial,” took first place 
in the digital category at the Colorado 
State Fair.

• The trend of AIGC
• AI Generated Content

• Foundation: Diffusion Model
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What is Diffusion Model
Lecture 7, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/30 Copyright @ IIIS, Tsinghua University 42

De
ep
 L
ea
rn
in
g,
 S
pr
in
g 
20
25
 

II
IS
, 
Ts
in
gh
ua
 U
ni
ve
rs
it
y



What is Diffusion Model

• Formal Definition
• 𝑥𝑥0 ∼ 𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
• Forward diffusion process: continuously adding Gaussian noise to data

• Sampling process: gradually recover the data from isomorphic Gaussian noise
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Diffusion Model

• Milestone works
• The story

• https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-
20230105/ 

• Deep Unsupervised Learning using Nonequilibrium Thermodynamics (ICML 
2015)

• The original diffusion model
• Generative Modeling by Estimating Gradients of the Data Distribution (Yang 

Song, et al., NIPS 2019)
• Score-based model, foundation of modern diffusion model

• Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 2020)
• DDPM: the first working diffusion model
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Diffusion Model

• Milestone works
• The story

• https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-
20230105/ 

• Deep Unsupervised Learning using Nonequilibrium Thermodynamics (ICML 
2015)

• The original diffusion model
• Generative Modeling by Estimating Gradients of the Data Distribution (Yang 

Song, et al., NIPS 2019)
• Score-based model, foundation of modern diffusion model

• Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 2020)
• DDPM: the first working diffusion model
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Diffusion Model

• Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 
2020)

• Learning 𝜖𝜖𝜃𝜃(𝑥𝑥, 𝑡𝑡); �𝛼𝛼𝑡𝑡 = ∏𝑖𝑖=1
𝑡𝑡 𝛼𝛼𝑖𝑖

• Original diffusion model loss function from ICML15 (your homework )
• 𝐿𝐿𝑡𝑡 = 𝐸𝐸𝑥𝑥0,𝜖𝜖

1−𝛼𝛼𝑡𝑡 2

2𝛼𝛼𝑡𝑡 1−�𝛼𝛼𝑡𝑡 Σ𝜃𝜃 2
2 𝜖𝜖𝑡𝑡 − 𝜖𝜖𝜃𝜃 �𝛼𝛼𝑡𝑡𝑥𝑥0 + 1 − �𝛼𝛼𝑡𝑡𝜖𝜖𝑡𝑡, 𝑡𝑡

2

• DDPM simplified objective: 𝑇𝑇 = 1000, 𝛼𝛼𝑡𝑡 = 1 − 𝛽𝛽𝑡𝑡, 𝛽𝛽𝑡𝑡~[10−4, 0.02]

Why does it work?
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Diffusion Model

• Milestone works
• The story

• https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-
20230105/ 

• Deep Unsupervised Learning using Nonequilibrium Thermodynamics (ICML 
2015)

• The original diffusion model
• Generative Modeling by Estimating Gradients of the Data Distribution (Yang 

Song, et al., NIPS 2019)
• Score-based model, foundation of modern diffusion model

• Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 2020)
• DDPM: the first working diffusion model
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Diffusion Model

• Milestone works
• The story

• https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-
20230105/ 

• Deep Unsupervised Learning using Nonequilibrium Thermodynamics (ICML 
2015)

• The original diffusion model
• Generative Modeling by Estimating Gradients of the Data Distribution (Yang 

Song, et al., NIPS 2019)
• Score-based model, foundation of modern diffusion model

• Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 2020)
• DDPM: the first working diffusion model
• A simplified training objective directly connected to score-based model
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Score-Based Model

• How to represent a distribution 𝑝𝑝(𝑥𝑥)?
• When the pdf is differentiable, we can compute the gradient of a probability 

density.
• Score function: 𝑠𝑠 𝑥𝑥 = ∇𝑥𝑥log 𝑝𝑝(𝑥𝑥) 

(pdf and score)
(Electrical potentials and fields)
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Score-Based Model

• Energy-based model (recap)
• Energy function 𝑓𝑓𝜃𝜃(𝑥𝑥)
• Partition function 𝑍𝑍(𝜃𝜃)

• Learning EBMs for 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
• MLE with Contrastive Divergence for 𝑥𝑥train ∼ 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

• Monte-Carlo sampling for negative samples

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
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Score-Based Model

• Energy-based model (recap)
• Energy function 𝑓𝑓𝜃𝜃(𝑥𝑥)
• Partition function 𝑍𝑍(𝜃𝜃)

• Learning EBMs for 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
• An alternative objective: Score matching

• fisher divergence 𝐹𝐹(𝑝𝑝| 𝑞𝑞 = 1
2
𝐸𝐸𝑥𝑥∼𝑝𝑝 ||∇𝑥𝑥𝑝𝑝 𝑥𝑥 − ∇𝑥𝑥𝑞𝑞(𝑥𝑥) 2

2

• Score matching by minimizing fisher divergence
1
2
𝐸𝐸𝑥𝑥∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∇𝑥𝑥 log 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 − ∇𝑥𝑥 log 𝑝𝑝𝜃𝜃(𝑥𝑥) 2

2 

= 𝐸𝐸𝑥𝑥∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
1
2
∇𝑥𝑥 log 𝑝𝑝𝜃𝜃 𝑥𝑥 2

2 + tr(∇𝑥𝑥2 log 𝑝𝑝𝜃𝜃(𝑥𝑥)) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

Your homework 
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Score-Based Model

• Energy-based model (recap)
• Energy function 𝑓𝑓𝜃𝜃(𝑥𝑥)
• Partition function 𝑍𝑍(𝜃𝜃)

• Learning EBMs for 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
• An alternative objective: Score matching

• fisher divergence 𝐹𝐹(𝑝𝑝| 𝑞𝑞 = 1
2
𝐸𝐸𝑥𝑥∼𝑝𝑝 ||∇𝑥𝑥𝑝𝑝 𝑥𝑥 − ∇𝑥𝑥𝑞𝑞(𝑥𝑥) 2

2

• Score matching by minimizing fisher divergence
1
2
𝐸𝐸𝑥𝑥∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∇𝑥𝑥 log 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 − ∇𝑥𝑥 log 𝑝𝑝𝜃𝜃(𝑥𝑥) 2

2 

= 𝐸𝐸𝑥𝑥∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
1
2
∇𝑥𝑥 log 𝑝𝑝𝜃𝜃 𝑥𝑥 2

2 + tr(∇𝑥𝑥2 log 𝑝𝑝𝜃𝜃(𝑥𝑥)) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
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Score-Based Model

• Energy-based model (recap)
• Energy function 𝑓𝑓𝜃𝜃(𝑥𝑥)
• Partition function 𝑍𝑍(𝜃𝜃)

• Learning EBMs for 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
• An alternative objective: Score matching

• fisher divergence 𝐹𝐹(𝑝𝑝| 𝑞𝑞 = 1
2
𝐸𝐸𝑥𝑥∼𝑝𝑝 ||∇𝑥𝑥𝑝𝑝 𝑥𝑥 − ∇𝑥𝑥𝑞𝑞(𝑥𝑥) 2

2

• Score matching by minimizing fisher divergence
1
2
𝐸𝐸𝑥𝑥∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∇𝑥𝑥 log 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 − ∇𝑥𝑥 log 𝑝𝑝𝜃𝜃(𝑥𝑥) 2

2 

= 𝐸𝐸𝑥𝑥∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
1
2
∇𝑥𝑥𝑓𝑓𝜃𝜃(𝑥𝑥) 2

2 + tr(∇𝑥𝑥2𝑓𝑓𝜃𝜃(𝑥𝑥)) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

No Partition function any more
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Score-Based Model

• Score-based model is beyond EBM
• 𝑠𝑠𝜃𝜃 𝑥𝑥 ≈ ∇𝑥𝑥 log 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

• Learning?
Probability density i.i.d. samples Score function
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Score-Based Model

• Score estimation formulation
• Given: i.i.d. samples 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∼ 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
• Task: Estimating the score ∇𝑥𝑥 log 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
• Score model: A learnable vector-valued function 𝑠𝑠𝜃𝜃 𝑥𝑥 :ℝ𝑑𝑑 → ℝ𝑑𝑑

• Goal: 𝑠𝑠𝜃𝜃 𝑥𝑥 ≈ ∇𝑥𝑥𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

Average 
Euclidean distance 

over the space
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• Objective: Average Euclidean distance over the whole space.

• Score matching:

• Requirements:
• The score model must be efficient to evaluate.
• How to have a proper model for the score function?

(Fisher divergence)

Score-Based Model
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• Deep neural networks as more expressive score models

•  Compute              and     

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑠𝑠𝜃𝜃,1

𝑠𝑠𝜃𝜃,2

𝑠𝑠𝜃𝜃,3

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑠𝑠𝜃𝜃,1

𝑠𝑠𝜃𝜃,2

𝑠𝑠𝜃𝜃,3

Backprops!

Score Matching 
is not Scalable due 
to the Jacobian!

Score-Based Model
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• Denoising score matching (Vincent 2011): 
     matching the score of a noise-perturbed distribution

Denoising score matching

Your homework 
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Denoising score matching
• Estimate the score of a noise-perturbed distribution

•                             is easy to compute
•  
•  

• Pros: efficient to optimize even for very high dimensional data, and 
useful for optimal denoising.

• Con: cannot estimate the score of clean data (noise-free)
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Denoising score matching
• Sample a minibatch of datapoints
• Sample a minibatch of perturbed datapoints

• Estimate the denoising score matching loss with empirical means

• If Gaussian perturbation

• Stochastic gradient descent
• Need to choose a very small 𝜎𝜎!
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Pitfall of denoising score matching

• The loss variance will increase drastically as 𝜎𝜎 → 0!
• Denoising score matching loss for Gaussian perturbations

• If we choose very small σ → 0
We need to tune 𝝈𝝈 carefully!
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Score-based generative modeling

Score 
Matching ?

Scores New samplesData samples
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Langevin dynamics sampling (Recap)

• Sample from using only the score
• Initialize 
• Repeat for

• If 𝜖𝜖 → 0 and 𝑇𝑇 → ∞, we are guaranteed to have

• Langevin dynamics + score estimation
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Score-based generative modeling

score 
matching

Scores New samplesData samples

Langevin 
dynamics
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Score-based generative modeling: empirical results

Langevin sampling process

Why does it fail in practice???
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Pitfall 1: manifold hypothesis

• Manifold hypothesis.

• Data score is undefined.

• Example
• The data distribution is a ring
• What is the score function like?

• What about the real-world data?

Data points
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Pitfall 1: manifold hypothesis

• A toy example for the manifold hypothesis
• Fitting the data with a low-dimensional linear manifold (PCA)

784

595
Dim

3072

2165
Dim

Real-world data have a small intrinsic dimension!
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Pitfall 2: challenge in low data density regions

• Let’s assume a well defined score function over the entire space
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Pitfall 2: challenge in low data density regions

Inaccurate Inaccurate

Song and Ermon. “Generative Modeling by Estimating Gradients 
of the Data Distribution.” NeurIPS 2019.

Langevin MCMC will have trouble 
exploring low density regions
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Pitfall 3: slow mixing of Langevin dynamics between data modes

• Let’s further assume that we have learned accurate score functions!

• We may still have issue when 𝑝𝑝(𝑥𝑥) is a multi-modal distribution
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Pitfall 3: slow mixing of Langevin dynamics between data modes

• Suppose the data distribution has two disajoint modes:

• Data score function:

• The score function has no dependence on the mode weighting 𝜋𝜋 at all!
• Langevin sampling will not reflect 𝜋𝜋

Lecture 7, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/30 Copyright @ IIIS, Tsinghua University 71

De
ep
 L
ea
rn
in
g,
 S
pr
in
g 
20
25
 

II
IS
, 
Ts
in
gh
ua
 U
ni
ve
rs
it
y



Pitfall 3: slow mixing of Langevin dynamics between data modes
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Pitfalls

• Manifold hypothesis. Data score is undefined.

• Score matching fails in low data density regions

• Langevin dynamics fail to weight different modes correctly

Data points
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Gaussian perturbation

• The solution to all pitfalls: Gaussian perturbation!

• Manifold + noise

• Score matching on noisy data.

CIFAR-10 Noisy CIFAR-10
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Challenge in low data density regions

Inaccurate Inaccurate

Song and Ermon. “Generative Modeling by Estimating Gradients 
of the Data Distribution.” NeurIPS 2019.
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Adding noise to data

Accurate Accurate

Song and Ermon. “Generative Modeling by Estimating Gradients 
of the Data Distribution.” NeurIPS 2019.

Provide useful directional information 
for Langevin MCMC.

Lecture 7, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/30 Copyright @ IIIS, Tsinghua University 76

De
ep
 L
ea
rn
in
g,
 S
pr
in
g 
20
25
 

II
IS
, 
Ts
in
gh
ua
 U
ni
ve
rs
it
y



Multi-scale Noise Perturbation

• Trade-off

• Multi-scale noise perturbations.

…

Lecture 7, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/30 Copyright @ IIIS, Tsinghua University 77

De
ep
 L
ea
rn
in
g,
 S
pr
in
g 
20
25
 

II
IS
, 
Ts
in
gh
ua
 U
ni
ve
rs
it
y



Trading off Data Quality and Estimation Accuracy

Worse data quality! Better score estimation!

(Red encodes error) 
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Using multiple noise scales
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Annealed Langevin Dynamics: Joint Scores to Samples

• Sample using                                    sequentially with Langevin dynamics.
• Anneal down the noise level.
• Samples used as initialization for the next level.
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Annealed Langevin dynamics
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Comparison to the vanilla Langevin dynamics

Langevin dynamics Annealed Langevin dynamics
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Joint Score Estimation via Noise Conditional Score Networks

𝑥𝑥1

𝑥𝑥2

𝜎𝜎

𝑠𝑠𝜃𝜃,1

𝑠𝑠𝜃𝜃,2

Noise Conditional 
Score Network

(NCSN)
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Training noise conditional score networks

• Weighted combination of denoising score matching losses
• Given the noise levels 𝜎𝜎1 …𝜎𝜎𝐿𝐿
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Choosing noise scales
• Maximum noise scale

• Minimum noise scale:        should be sufficiently small to control the 
noise in final samples.
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Choosing noise scales

• Key intuition: adjacent noise scales 
should have sufficient overlap to 
facilitate transitioning across noise 
scales in annealed Langevin 
dynamics.

• A geometric progression with 
sufficient length.
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Choosing the weighting function

• Weighted combination of denoising score matching losses

• How to choose the weighting function                                 ? 
• Goal: balancing different score matching losses in the sum  
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Training noise conditional score networks
• Sample a mini-batch of datapoints
• Sample a mini-batch of noise scale indices

• Sample a mini-batch of Gaussian noise
• Estimate the weighted mixture of score matching losses

• Stochastic gradient descent
• As efficient as training one single non-conditional score-based model
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Experiments: Sampling
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Experiments: Sampling
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High Resolution Image Generation
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Comparison between NCSN and DDPM

• NCSN
• Learning: 

• Inference:

• DDPM
• NCSN with a few enhancements for training stabilities

• More discussions can be found in the original paper (your homework )
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Using an infinite number of noise scales

: continuous index of perturbed distributions   
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Compact representation of infinite distributions

•         
• Stochastic process                  Marginal probability densities

• Stochastic differential equation: 

Infinitesimal white noiseDeterministic drift
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Score-based generative modeling via SDEs
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Score-based generative modeling via SDEs

Time reversal 
Score function!
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Score-based generative modeling via SDEs

• Time-dependent score-based model

• Training:

• Reverse-time SDE

• Sampling: Euler-Maruyama

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling 
through Stochastic Differential Equations.” ICLR 2021.

Faster sampling?
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Predictor-Corrector sampling methods

• Predictor-Corrector sampling.
• Predictor: Numerical SDE solver
• Corrector: Score-based MCMC

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling 
through Stochastic Differential Equations.” ICLR 2021.

corrector
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Results on predictor-corrector sampling

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling 
through Stochastic Differential Equations.” ICLR 2021.
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High-Fidelity Generation for 1024x1024 Images

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling 
through Stochastic Differential Equations.” ICLR 2021.
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Can we further accelerate inference?

• ODE solver still requires iterative computation
• Can we make it faster?

• Consistency Models: use a neural network for ODE prediction!
• Given a smooth ODE, learn 𝑓𝑓𝜃𝜃 𝑥𝑥𝑡𝑡, 𝑡𝑡 → 𝑥𝑥0 to map to trajectory origin.
• The mapping over the same trajectory should be consistent
• Training by distillation (more details can be found in the CM paper)

Song, Dhariwal, Chen, Sutskever. “Consistency Models.” ICML 2023.
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Can we further accelerate inference?

• Consistency Models: use a neural network for ODE prediction!
• Given a smooth ODE, learn 𝑓𝑓𝜃𝜃 𝑥𝑥𝑡𝑡, 𝑡𝑡 → 𝑥𝑥0 to map to trajectory origin.

Song, Dhariwal, Chen, Sutskever. “Consistency Models.” ICML 2023.
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Controllable Generation

• Conditional reverse-time SDE via unconditional scores

unconditional score,
Trained w/o y

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling 
through Stochastic Differential Equations.” ICLR 2021.

Trained separately or
specified with domain knowledge

Control signal
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Controllable Generation: class-conditional generation

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling 
through Stochastic Differential Equations.” ICLR 2021.

•     is the class label
•               is a time-dependent classifier
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Controllable Generation: inpainting

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling 
through Stochastic Differential Equations.” ICLR 2021.

•     is the masked image
•               can be approximated without training
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Controllable Generation: colorization

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling 
through Stochastic Differential Equations.” ICLR 2021.

•     is the gray-scale image
•               can be approximated without training
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Controllable Generation: colorization

Resolution: 1024x1024
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Controllable generation: Text-guided generation

• An astronaut riding a horse in 
photorealistic style (Dall-E 2)

• A very attractive and natural woman, 
sitting on a yoka mat, breathing, eye 
closed, no make up, intense satisfaction, 
she looks like she is intensely relaxed, 
yoga class, sunrise, 35mm, F1: 4 
(Midjourney v5)

• Cozy Scandinavian living room, 
there is a cat sleeping on the 
couch, depth of field 
(Midjourney v5)

More on Lecture 12
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Build Your Diffusion Model

• Hugging face will be your best friend!
• Hugging face is a platform for sharing ML models
• Example: Stable Diffusion Model https://huggingface.co/runwayml/stable-

diffusion-v1-5 

• How to develop your own model?
• For example, I want to build a model to generating 二次元 images
• Re-training can be expensive!
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Build Your Diffusion Model

• LORA: Low-rank adaptation of large language models (MSR, 2021)
• Low-rank hypothesis

• Neural network models with over-parameterization reside in a low intrinsic dimension
• Fine-tuning can be also performed with a “low-rank” fashion

• Low-rank decomposition of additive weights
• Model weights are frozen
• 𝐴𝐴 is initialized to small Gaussian noise
• 𝐵𝐵 is initialized to zero
• https://github.com/microsoft/LoRA 

• Lora becomes extremely popular these days …
• Some examples on next slide …
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Build Your Diffusion Model: Examples

• Fashion Girl • Blind Box

Create your own art from text, with your chosen style (Lora)!

But what if I want a fine-grained control beyond text?
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Control Your Model

• ControlNet: Adding Conditional Control to Text-to-Image Diffusion 
Models (Stanford, 2023)

• Let the model also condition on additional signal
• Example: Canny edge detection
• https://github.com/lllyasviel/ControlNet 

Lecture 7, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/30 Copyright @ IIIS, Tsinghua University 112

De
ep
 L
ea
rn
in
g,
 S
pr
in
g 
20
25
 

II
IS
, 
Ts
in
gh
ua
 U
ni
ve
rs
it
y



Control Your Model

• ControlNet: Adding Conditional Control to Text-to-Image Diffusion 
Models (Stanford, 2023)

• Let the model also condition on additional signal
• Example: Human Motion
• https://github.com/lllyasviel/ControlNet 
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Control Your Model

• ControlNet: Adding Conditional Control to Text-to-Image Diffusion 
Models (Stanford, 2023)

• Similar idea to Lora: frozen weight + small adaptation
• Key techniques:

• Zero-convolution: 1x1 conv-layer initializes to zero
• Trainable copy for adaptation initialization
• Repeated additive for conditioning
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Control Your Model

• ControlNet: Adding Conditional Control to Text-to-Image Diffusion 
Models (Stanford, 2023)

• More ControlNet examples
• Home designer
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Control Your Model

• ControlNet: Adding Conditional Control to Text-to-Image Diffusion 
Models (Stanford, 2023)

• More ControlNet examples
• Home designer
• Even video!

• more in future lectures…
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Summary: Diffusion Model

• Advanced Generative Model
• Diffusion Model and Score-Based Model

• Score matching for gradients of log probability
• Training & Inference (with condition)

• Noise conditioned network
• Langevin dynamics and SDE for fast sampling
• Conditioned generation without the need of retraining

• Frontier AIGC: LORA and ControlNet
• Hugging Face is your friend
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Generative Model (Summary)

• Goal of generative model
• Learn a distribution 𝑝𝑝 𝑥𝑥  to generate samples and unsupervised learning

• Models so far
• Energy-based model

• 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍

exp(−𝐸𝐸(𝑥𝑥)), powerful representation but hard to sample
• Variational auto-encoder

• 𝑝𝑝 𝑥𝑥, 𝑧𝑧 = 𝑝𝑝 𝑧𝑧 𝑝𝑝(𝑥𝑥|𝑧𝑧), variational inference as an approximate method
• Generative adversarial net

• 𝐺𝐺(𝑧𝑧) and 𝐷𝐷(𝑥𝑥), an implicit model with high generation quality and unstable training
• Normalizing flow

• 𝑥𝑥 = 𝑓𝑓(𝑧𝑧), best mathematical properties but the most restricted representation
• Score-based models

• 𝑠𝑠 𝑥𝑥 = 𝛻𝛻𝑥𝑥𝑝𝑝(𝑥𝑥; 𝜃𝜃), highest generation quality + stable training, but generation is slow
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Generative Model (Summary)

• Goal of generative model
• Learn a distribution 𝑝𝑝 𝑥𝑥  to generate samples and unsupervised learning

• Models so far
• Energy-based model

• 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍

exp(−𝐸𝐸(𝑥𝑥)), powerful representation but hard to sample
• Variational auto-encoder

• 𝑝𝑝 𝑥𝑥, 𝑧𝑧 = 𝑝𝑝 𝑧𝑧 𝑝𝑝(𝑥𝑥|𝑧𝑧), variational inference as an approximate method
• Generative adversarial net

• 𝐺𝐺(𝑧𝑧) and 𝐷𝐷(𝑥𝑥), an implicit model with high generation quality and unstable training
• Normalizing flow

• 𝑥𝑥 = 𝑓𝑓(𝑧𝑧), best mathematical properties but the most restricted representation
• Score-based models

• 𝑠𝑠 𝑥𝑥 = 𝛻𝛻𝑥𝑥𝑝𝑝(𝑥𝑥; 𝜃𝜃), highest generation quality + stable training, but generation is slow

Coming next: generating data samples beyond images!
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Thanks!
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