Deep Learning lecture 7 Normalizing Flow & Score-Based Model Yi Wu, IIIS Spring 2025 Mar-31 3/30 1 Copyright @ IIIS, Tsinghua University

Today's Topic

- Normalizing Flow
 - A generative model class that has the best sampling and likelihood properties
- Score-based generative model
 - A different framework to tackle general energy-based models

Today's Topic

- Normalizing Flow
 - A generative model class that has the best sampling and likelihood properties
- Score-based generative model
 - A different framework to tackle general energy-based models

Latent Variable Model (Recap)

- p(x,z) = p(z)p(x|z)
 - Given z, we use p(x|z) to generate x for a consistent probability distribution
 - Hard to estimate the exact likelihood $p(x) = \int_{z} p(x|z)p(z)$
 - Variational inference by ELBO
- Can we simply the generation process?

A Simplified Generation Process

- p(x,z) = p(z)p(x|z)
 - Given z, we use p(x|z) to generate x for a consistent probability distribution
 - Hard to estimate the exact likelihood $p(x) = \int_{z} p(x|z)p(z)$
 - Variational inference by ELBO
- Can we simply the generation process?
 - We can directly apply a deterministic process $f: z \rightarrow x$
 - E.g., $z \sim N(0, I)$ and x = f(z)
 - $x \sim N(\mu, \sigma^2)$ is equivalent to $z \sim N(0, 1)$, $x = \mu + \sigma \cdot z$

5

OpenPsi @ IIIS

A Simplified Generation Process

- p(x,z) = p(z)p(x|z)
 - Given z, we use p(x|z) to generate x for a consistent probability distribution
 - Hard to estimate the exact likelihood $p(x) = \int_{z} p(x|z)p(z)$
 - Variational inference by ELBO
- Can we simply the generation process?
 - We can directly apply a deterministic process $f: z \rightarrow x$
 - E.g., $z \sim N(0, I)$ and x = f(z)
- Can we make the likelihood p(x) tractable?
- So that we can directly run MLE for training Thing The University

- Goal: design $x = f(z; \theta)$ s.t.
 - Assume z is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has a tractable likelihood
- Uniform: *z*~unif (0,1)
 - Density p(z) = 1
 - x = 2z + 1, then p(x) = ?

- Goal: design $x = f(z; \theta)$ s.t.
 - Assume z is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has a tractable likelihood
- Uniform: *z*~unif (0,1)
 - Density p(z) = 1
 - x = 2z + 1, then p(x) =
 - $x = a \cdot z + b$, then p(x) = 1/|a| (for $a \neq 0$)
 - General 1-D case: x = f(z), p(x) = ?
 - Assume f(z) is a bijection

OpenPsi @ IIIS

- Goal: design $x = f(z; \theta)$ s.t.
 - Assume z is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has a tractable likelihood
- Uniform: *z*~unif (0,1)
 - Density p(z) = 1
 - x = 2z + 1, then $p(x) = \frac{1}{2}$
 - $x = a \cdot z + b$, then p(x) = 1/|a| (for $a \neq 0$)
 - General 1-D case: x = f(z), then $p(x) = p(z) \left| \frac{dz}{dx} \right|$
 - Assume f(z) is a bijection
 - p(x)dx = p(z)dz

3/30

- Goal: design $x = f(z; \theta)$ s.t.
 - Assume z is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has a tractable likelihood
- Uniform: $z \sim unif(0,1)$
 - Density p(z) = 1

 - x = 2z + 1, then $p(x) = \frac{1}{2}$ $x = a \cdot z + b$, then p(x) = 1/|a| (for $a \neq 0$)
 - General 1-D case: x = f(z), then $p(x) = p(z) \left| \frac{dz}{dx} \right| = |f'(z)|^{-1} p(z)$
 - Assume f(z) is a bijection
 - p(x)dx = p(z)dz

p(z)

- Goal: design $x = f(z; \theta)$ s.t.
 - Assume z is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has a tractable likelihood
- Uniform: $z = [z_1, z_2] \sim unif([0,1] \times [0,1])$
 - Density p(z) = 1

• $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

•
$$x = Az$$
, then $p(x) = b$

- Goal: design $x = f(z; \theta)$ s.t.
 - Assume z is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has a tractable likelihood

(0, 1)

(0. 0

Copyright @ HIS. Tsinghua University

(1, 1)

(1, 0)

- Uniform: $z = [z_1, z_2] \sim unif([0,1] \times [0,1])$
 - Density p(z) = 1
 - x = Az, then p(x) = ?
 - $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - z is mapped to a parallelogram

OpenPsi @ IIIS

- Goal: design $x = f(z; \theta)$ s.t.
 - Assume z is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has a tractable likelihood
- Uniform: $z = [z_1, z_2] \sim unif([0,1] \times [0,1])$
 - Density p(z) = 1
 - x = Az, then p(x) = 1/S
 - $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - z is mapped to a parallelogram

•
$$S = |ad - bc|$$
, the area

(1, 0)

(0, 1

(0.0)

Copyright @ IIIS. Tsinghua University

2-D Geometry

- The area of the parallelogram is equivalent to the determinant of A $det A = det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$
- For any linear transformation x = Az + b
 - The following holds (for space of any dimensions) $p(x) = |\det A|^{-1} \cdot p(z)$
 - Remark: A has a full rank! (bijection)
- More general cases: the change of variable

• Idea

3/30

- Sample z_0 from an "easy" distribution, i.e., a standard Gaussian
- Apply K bijections $z_i = f_i(z_{i-1})$ $1 \le i \le K$
- The final sample $x = f_K(z_K)$ has tractable density
- Normalizing Flow
 - $z_0 \sim N(0, I), z_i = f_i(z_{i-1}), x = z_K$ where $x, z_i \in \mathbb{R}^d \& f_i$ is invertible
 - Every revertible function produces a normalized density function

• Idea

3/30

- Sample z_0 from an "easy" distribution, i.e., a standard Gaussian
- Apply K bijections $z_i = f_i(z_{i-1})$ $1 \le i \le K$
- The final sample $x = f_K(z_K)$ has tractable density
- Normalizing Flow
 - $z_0 \sim N(0, I), z_i = f_i(z_{i-1}), x = z_K$ where $x, z_i \in \mathbb{R}^d \& f_i$ is invertible
 - Every revertible function produces a normalized density function

- Generation is trivial
 - Sample z_0 , then apply the transformations

 $\mathbf{z}_0 \sim p_0(\mathbf{z}_0)$

• Log-Likelihood

$$\log p(x) = \log p(z_{K-1}) - \log \left| \det \left(\frac{\partial f_K}{\partial z_{K-1}} \right) \right|$$

$$\log p(x) = \log p(z_0) - \sum_i \log \left| \det \left(\frac{\partial f_i}{\partial z_{i-1}} \right) \right|$$

$$\sum_{i \in I_i} \int_{i \in I_i}$$

 $\mathbf{z}_i \sim p_i(\mathbf{z}_i)$

Ġ

 $\mathbf{z}_K \sim p_K(\mathbf{z}_K)$

- Generation is trivial
 - Sample z_0 , then apply the transformations
- Log-Likelihood

$$\log p(x) = \log p(z_{K-1}) - \log \left| \det \left(\frac{\partial f_K}{\partial z_{K-1}} \right) \right|$$

$$\log p(x) = \log p(z_0) - \sum_i \log \left| \det \left(\frac{\partial f_i}{\partial z_{i-1}} \right) \right|$$

Gaussian density

$$\sum_{z_0 \sim p_0(z_0)} \sum_{z_1 \sim p_i(z_i)} \sum_{z_i \sim p_i(z_i)} \sum_{z_i \sim p_i(z_i)} \sum_{z_K \sim p_K(z_K)} \sum_{z_K \sim p_K(z_K)}$$

21

Ġ

- Generation is trivial
 - Sample z_0 , then apply the transformations
- Log-Likelihood

$$\log p(x) = \log p(z_{K-1}) - \log \left| \det \left(\frac{\partial f_K}{\partial z_{K-1}} \right) \right|$$

$$\log p(x) = \log p(z_0) - \sum_{i} \log \left| \det \left(\frac{\partial f_i}{\partial z_{i-1}} \right) \right|$$

- Naïve flow model requires extremely expensive computation
 - Determinant of a $d \times d$ matrix
- Idea
 - Design a good bijection $f_i(z)$ such that the determinant is easy to compute
- Technical Keys
 - Bijection
 - Randomly constructed matrices are typically full-rank
 - Structured Jacobian
 - Desired Jacobian structures for fast determinant computation

3/30

Triangular Jacobian

Lecture 7, Deep Learning, 2025 Spring
Triangular Jacobian
• Given
$$x = (x_1, ..., x_d) = f(z) = (f_1(z), \partial f'_1 + f_d(z))$$

$$J = \frac{\partial f}{\partial z} = \begin{bmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & \frac{\partial f_1}{\partial z_d} \\ \vdots & \ddots & \vdots \\ \partial z & \ddots & \partial z & d \end{bmatrix}$$

$$J = \frac{\partial f}{\partial z} = \begin{bmatrix} \partial z_1 & \partial z_d \\ \vdots & \ddots & \vdots \\ \frac{\partial f_d}{\partial z_1} & \cdots & \frac{\partial f_d}{\partial z_d} \end{bmatrix}$$

• Suppose $x_i = f_i(z)$ only depends on $z_{\leq i}$, then
$$\det J = \det \left| \frac{\partial f}{\partial z} \right| = \det \begin{bmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \frac{\partial f_d}{\partial z_1} & \cdots & \frac{\partial f_d}{\partial z_d} \end{bmatrix} = \det \operatorname{diag}(J) = \prod_i \frac{\partial f_i}{\partial z_i}$$

NICE

- Nonlinear Independent Components Estimation (Dinh et. al, 2014)
 - z = f(x)
 - Notational convention for MLE learning
 - we partition x into two disjoint subsets $x_{1:m}$ and $x_{m+1:d}$ for any $1 \le m \le d$
 - Forward pass $x \rightarrow z$ (inference)
 - $z_{1:m} = x_{1:m}$ (identity)
 - $z_{m+1:d} = x_{m+1:d} + \mu_{\theta}(x_{1:m})$ (μ_{θ} is a neural network)
 - Backward pass $z \rightarrow x$ (sampling)
 - $x_{1:m} = z_{1:m}$ (identity)
 - $x_{m+1:d} = z_{m+1:d} \mu_{\theta}(z_{1:m})$
- Volume preserving transformation
 - $\det J = 1$

$$= \frac{\partial f}{\partial x} = \begin{bmatrix} I_m & 0\\ \frac{\partial \mu}{\partial x_{1:m}} & I_{d-m} \end{bmatrix}$$

NICE

- Coupling layers are introduced to ensure all dimensions are covered
 - Reverse (or randomly shuffle) the partition before each transformation layer
- First layer of NICE uses a re-scaling layer
 - $z_i = S_{ii} x_i$
 - Ensure non-unit volume transformation
 - Jacobian of forward pass

$$J = \operatorname{diag}(S)$$
$$\operatorname{det} J = \prod_{i} S_{ii}$$

• Generation Results

NICE

- Inpainting
 - $x = (x_v, x_h)$
 - We have tractable likelihood function $p(x_v, x_h)!$
 - Gradient ascent (stochastic gradient MCMC if you want samples)

G

- NICE: most layers maintain an unchanged volume
- Non-volume preserving extension of NICE (Dinh et al, 2016)
 - Two partitions over $z: z_{1:m}$ and $z_{m+1:d}$ for any $1 \le m \le d$
 - Forward pass $x \rightarrow z$ (inference)
 - $z_{1:m} = x_{1:m}$ (identity)
 - $z_{m+1:d} = x_{m+1:d} \cdot \exp(\alpha_{\theta}(x_{1:m})) + \mu_{\theta}(x_{1:m}) (\mu_{\theta} \& \alpha_{\theta} \text{ are neural networks})$
 - Backward pass $z \rightarrow x$ (sampling)
 - $x_{1:m} = z_{1:m}$ (identity)
 - $x_{m+1:d} = (z_{m+1:d} \mu_{\theta}(z_{1:m})) \cdot \exp(-\alpha_{\theta}(x_{1:m}))$
 - Non-volume preserving transformation

$$\det J = \prod_{i=m_{0}}^{a} \exp(\alpha_{\theta}(x_{1:m})_{i})$$

Real-NVP

- Generation Results
- nysi • Left: training data; Right: generated samples

- Explore the latent space
 - 4 samples selected: z^0 , z^1 , z^2 , z^3 , two interpolation parameters α , β
 - $z = \cos(\alpha) \left(\cos(\beta)z^1 + \sin(\beta)z^2\right) + \sin(\alpha)\left(\cos(\beta)z^3 + \sin(\beta)z^4\right)$

Real-NVP

• Fun Fact

Accepted as a workshop contribution at ICLR 2015

NICE: NON-LINEAR INDEPENDENT COMPONENTS ESTIMATION

Laurent Dinh David Krueger Yoshua Bengio* Département d'informatique et de recherche opérationnelle Université de Montréal Montréal, QC H3C 3J7

DENSITY ESTIMATION USING REAL NVP

Laurent Dinh* Montreal Institute for Learning Algorithms University of Montreal Montreal, QC H3T1J4

Jascha Sohl-Dickstein Google Brain **Samy Bengio** Google Brain

Published as a conference paper at ICLR 2017

GLOW

- Limited expressiveness of previous coupling layers
 - But a general non-linear transformation can be too expensive...
- Generative Flow with Invertible 1x1 Convolutions (Kingma et al. 2018)
 - Input: $x = h \times w \times c$ (height, width, channel) (assume c is small)
 - Key idea: introduce 1x1 convolutions when channel size is small
 - 1x1 conv: a linear transformation for each feature map location
 - Forward mapping: $z_{ij} = W x_{ij} + b$
 - Inverse mapping: simply compute the inverse matrix of \boldsymbol{W}
 - Computation $O(c^3)$
 - $\log |\det J| = h \cdot w \cdot \log |\det W|$
 - Also use normalization layer to stabilizing training
 - Architecture details can be found in the paper

GLOW

• Generation Results

34

Normalizing Flow: Summary

- Key Ideas
 - Generation by iteratively transforming a simple distribution
 - Invertible transformation for tractable likelihood
 - Enable straightforward MLE learning
 - Design principle
 - Apply non-linear transformations with easy-to-compute Jacobian determinants
- Pros & Cons
 - Easy sampling & training via deterministic transformation from a simple distribution
 - Most restricted network structure (trade expressiveness for tractability)
 - Architecture, dimensionality, etc.
 - Most suitable for the use cases where tractability is a must

Today's Topic

- Normalizing Flow
 - A generative model class that has the best sampling and likelihood properties
- Score-based generative model
 - A different framework to tackle general energy-based models
Today's Topic

- Normalizing Flow
 - A generative model class that has the best sampling and likelihood properties
- Score-based generative model
 - A different framework to tackle general energy-based models
 - The model class that has the best generation quality
 - It is also called the *diffusion model*

Why Diffusion Model? I JUST FEEL SO EMPTY INSIDE. Dall-E 3 Copyright @ IIIS, Tsinghua University 3/30 38

Lecture 7, Deep Learning, 2025 Spring

Why Diffusion Model?

Stable Diffusion Model (SD3)

Why Diffu

Midjourney

Why Diffusion Model?

- Al-generated photo wins the award
 - Jason Allen's A.I.-generated work, "Théâtre D'opéra Spatial," took first place in the digital category at the Colorado State Fair.

• The trend of AIGC

3/30

• Al Generated Content

• Foundation: Diffusion Model

3/30

What is Diffusion Model

- Formal Definition
 - $x_0 \sim q_{data}(x)$
 - Forward diffusion process: continuously adding Gaussian noise to data

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-eta_t}\mathbf{x}_{t-1}, eta_t \mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

• Sampling process: gradually recover the data from isomorphic Gaussian noise

Diffusion Model

- Milestone works
 - The story
 - <u>https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-20230105/</u>
 - Deep Unsupervised Learning using Nonequilibrium Thermodynamics (ICML 2015)
 - The original diffusion model
 - Generative Modeling by Estimating Gradients of the Data Distribution (Yang Song, et al., NIPS 2019)
 - Score-based model, foundation of modern diffusion model
 - Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 2020)
 - DDPM: the first working diffusion model

Diffusion Model

- Milestone works
 - The story
 - <u>https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-20230105/</u>
 - Deep Unsupervised Learning using Nonequilibrium Thermodynamics (ICML 2015)
 - The original diffusion model
 - Generative Modeling by Estimating Gradients of the Data Distribution (Yang Song, et al., NIPS 2019)
 - Score-based model, foundation of modern diffusion model
 - Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 2020)
 - DDPM: the first working diffusion model

3/30

Diffusion Model

- Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 2020)
 - Learning $\epsilon_{\theta}(x, t)$; $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$
 - Original diffusion model loss function from ICML15 (your homework 🙂)

•
$$L_t = E_{x_0,\epsilon} \left[\frac{(1-\alpha_t)^2}{2\alpha_t(1-\overline{\alpha}_t)|\Sigma_\theta|_2^2} \left| \epsilon_t - \epsilon_\theta \left(\sqrt{\overline{\alpha}_t} x_0 + \sqrt{1-\overline{\alpha}_t} \epsilon_t, t \right) \right|^2 \right]$$

• DDPM simplified objective: T=1000, $\alpha_t=1-\beta_t$, $\beta_t\sim[10^{-4},0.02]$

Algorithm 1 Training	Algorithm 2 Sampling	
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \ldots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, \mathbf{x}_t) \right)$	$(t)) + \sigma_t \mathbf{z}$
$\nabla_{\theta} \left\ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \right\ ^{2}$ 6: until converged Copyright © IIIS	5: end for , Tsinghua return \mathbf{x}_0	Why does it work?

Diffusion Model

- Milestone works
 - The story
 - <u>https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-20230105/</u>
 - Deep Unsupervised Learning using Nonequilibrium Thermodynamics (ICML 2015)
 - The original diffusion model
 - Generative Modeling by Estimating Gradients of the Data Distribution (Yang Song, et al., NIPS 2019)
 - Score-based model, foundation of modern diffusion model
 - Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 2020)
 - DDPM: the first working diffusion model

Diffusion Model

- Milestone works
 - The story
 - <u>https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-20230105/</u>
 - Deep Unsupervised Learning using Nonequilibrium Thermodynamics (ICML 2015)
 - The original diffusion model
 - Generative Modeling by Estimating Gradients of the Data Distribution (Yang Song, et al., NIPS 2019)
 - Score-based model, foundation of modern diffusion model
 - Denoising Diffusion Probabilistic Models (Jonathan Ho, et al., NIPS 2020)
 - DDPM: the first working diffusion model
 - A simplified training objective directly connected to score-based model

- How to represent a distribution p(x)?
 - When the pdf is differentiable, we can compute the gradient of a probability density.
 - Score function: $s(x) = \nabla_x \log p(x)$

- Energy-based model (recap)
 - Energy function $f_{\theta}(x)$
 - Partition function $Z(\theta)$
- Learning EBMs for p_{data}
 - MLE with Contrastive Divergence for $x_{\text{train}} \sim p_{data}$

 $\max_{\theta} f_{\theta}(\mathbf{x}_{\text{train}}) - \log Z(\theta)$

 $\nabla_{\theta} f_{\theta}(\mathbf{x}_{\text{train}}) - \nabla_{\theta} \log Z(\theta) \approx \nabla_{\theta} f_{\theta}(\mathbf{x}_{\text{train}}) - \nabla_{\theta} f_{\theta}(\mathbf{x}_{\text{sample}})$

• Monte-Carlo sampling for negative samples $\mathbf{x}_{ ext{sample}} \sim p_{ heta}(\mathbf{x})$

- Energy-based model (recap)
 - Energy function $f_{\theta}(x)$
 - Partition function $Z(\theta)$
- Learning EBMs for p_{data}
 - An alternative objective: Score matching
 - fisher divergence $F(p||q) = \frac{1}{2}E_{x \sim p}[|\nabla_x p(x) \nabla_x q(x)|_2^2]$
 - Score matching by minimizing fisher divergence

$$\frac{1}{2} E_{x \sim p_{data}} [|\nabla_x \log p_{data}(x) - \nabla_x \log p_{\theta}(x)|_2^2]$$

= $E_{x \sim p_{data}} \begin{bmatrix} 1 \\ 2 \\ |\nabla_x \log p_{\theta}(x)|_2^2 + \operatorname{tr}(\nabla_x^2 \log p_{\theta}(x)) \end{bmatrix} + Const$

- Energy-based model (recap)
 - Energy function $f_{\theta}(x)$
 - Partition function $Z(\theta)$
- Learning EBMs for p_{data}
 - An alternative objective: Score matching
 - fisher divergence $F(p||q) = \frac{1}{2}E_{x \sim p}[|\nabla_x p(x) \nabla_x q(x)|_2^2]$
 - Score matching by minimizing fisher divergence

$$\frac{1}{2} E_{x \sim p_{data}} [|\nabla_x \log p_{data}(x) - \nabla_x \log p_{\theta}(x)|_2^2]$$
$$= E_{x \sim p_{data}} \left[\frac{1}{2} |\nabla_x \log p_{\theta}(x)|_2^2 + \operatorname{tr}(\nabla_x^2 \log p_{\theta}(x)) \right] + Const$$

- Energy-based model (recap)
 - Energy function $f_{\theta}(x)$
 - Partition function $Z(\theta)$
- Learning EBMs for p_{data}
 - An alternative objective: Score matching
 - fisher divergence $F(p||q) = \frac{1}{2}E_{x \sim p}[|\nabla_x p(x) \nabla_x q(x)|_2^2]$
 - Score matching by minimizing fisher divergence

$$\frac{1}{2}E_{x\sim p_{data}}[|\nabla_x \log p_{data}(x) - \nabla_x \log p_{\theta}(x)|_2^2]$$

$$= E_{x\sim p_{data}}\left[\frac{1}{2}|\nabla_x f_{\theta}(x)|_2^2 + \operatorname{tr}(\nabla_x^2 f_{\theta}(x))\right] + ConstNo Partition function any more$$

- Score estimation formulation
 - Given: i.i.d. samples $\{x_1, x_2, \dots, x_n\} \sim p_{data}(x)$
 - Task: Estimating the score $\nabla_x \log p_{data}(x)$
 - Score model: A learnable vector-valued function $s_{\theta}(x)$: $\mathbb{R}^d \to \mathbb{R}^d$
 - Goal: $s_{\theta}(x) \approx \nabla_x p_{data}(x)$

 $\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})$

 S_{θ}

Average Euclidean distance over the space

• **Objective:** Average Euclidean distance over the whole space.

$$\frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}} [\|\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) - \boldsymbol{s}_{\theta}(\mathbf{x})\|_{2}^{2}]$$
(Fisher divergence)
Score matching:

 $E_{\mathbf{x} \sim p_{\text{data}}} \sum_{i=1}^{n} \| \boldsymbol{s}_{\theta}(\mathbf{x}) \|_{2}^{2} + \text{tr}(\underbrace{\bigvee_{\mathbf{x}} \boldsymbol{s}_{\theta}(\mathbf{x})}_{\text{Jacobian of } \boldsymbol{s}_{\theta}(\mathbf{x})}$

- **Requirements:** •
 - The score model must be efficient to evaluate. •
 - How to have a proper model for the score function? ۲

 \bullet

• Deep neural networks as more expressive score models

Score Matching is not Scalable due to the Jacobian!

O(d) Backprops!

57

 \bullet

Denoising score matching

Denoising score matching (Vincent 2011): matching the score of a noise-perturbed distribution $p_{\text{data}}(\mathbf{x})$ $\frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_{\sigma}} [\| \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}) - s_{\theta}(\tilde{\mathbf{x}}) \|_{2}^{2}]$ $= \operatorname{const.} + \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_{\sigma}} [\|\boldsymbol{s}_{\theta}(\tilde{\mathbf{x}})\|_{2}^{2}] - \int q_{\sigma}(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})^{\mathsf{T}} \boldsymbol{s}_{\theta}(\tilde{\mathbf{x}}) \, \mathrm{d}\tilde{\mathbf{x}}$ $Q_{\sigma} \left(\widetilde{\mathbf{X}} \mid \mathbf{X} \right) = \operatorname{const.} + \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_{\sigma}} [\|\boldsymbol{s}_{\theta}(\tilde{\mathbf{x}})\|_{2}^{2}] - E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})^{\mathsf{T}} \boldsymbol{s}_{\theta}(\tilde{\mathbf{x}})]$ \mathbf{X} Your homework 😳 $= \text{const.} + \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\| \boldsymbol{s}_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \|_{2}^{2}]$ $q_{\sigma}(\tilde{\mathbf{x}})$ $\frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}} | \mathbf{x})} [\|\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} | \mathbf{x})\|_{2}^{2}]$ $= \operatorname{const.} + \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}} | \mathbf{x})} [\| \boldsymbol{s}_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} | \mathbf{x}) \|_{2}^{2}] + \operatorname{const.}$ $= \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}}_{\alpha}} q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\| \boldsymbol{s}_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} | \mathbf{x}) \|_{2}^{2}] + \text{const.}$

Denoising score matching

• Estimate the score of a noise-perturbed distribution

$$\frac{1}{2} E_{\tilde{\mathbf{x}} \sim p_{\text{data}}} [\| \boldsymbol{s}_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}) \|_{2}^{2}]$$

=
$$\frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\| \boldsymbol{s}_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} | \mathbf{x}) \|_{2}^{2}] + \text{const.}$$

- $\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})$ is easy to compute • $q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}} \mid \mathbf{x}, \sigma^2 \mathbf{I})$ • $\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) = -\frac{\tilde{\mathbf{x}} - \mathbf{x}}{\sigma^2}$
- **Pros:** efficient to optimize even for very high dimensional data, and useful for optimal denoising.
- **Con:** cannot estimate the score of clean data (noise-free)

Denoising score matching

- Sample a minibatch of datapoints $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\} \sim p_{\text{data}}(\mathbf{x})$ Sample a minibatch of perturbed datapoints $\{\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2, \cdots, \tilde{\mathbf{x}}_n\} \sim q_{\sigma}(\tilde{\mathbf{x}})$

$$\tilde{\mathbf{x}}_i \sim q_\sigma(\tilde{\mathbf{x}}_i \mid \mathbf{x}_i)$$

Estimate the denoising score matching loss with empirical means

$$\frac{1}{2n} \sum_{i=1}^{n} [\|\boldsymbol{s}_{\theta}(\tilde{\mathbf{x}}_{i}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}_{i} \mid \mathbf{x}_{i})\|_{2}^{2}]$$

If Gaussian perturbation

$$\frac{1}{2n}\sum_{i=1}^{n}\left[\left\|\boldsymbol{s}_{\theta}(\tilde{\mathbf{x}}_{i}) + \frac{\tilde{\mathbf{x}}_{i} - \mathbf{x}_{i}}{\sigma^{2}}\right\|_{2}^{2}\right]$$

- Stochastic gradient descent
- Need to choose a very small σ !

Pitfall of denoising score matching

- The loss variance will increase drastically as $\sigma \rightarrow 0!$
- Denoising score matching loss for Gaussian perturbations

Var

$$\frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}} E_{\tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} \left[\left\| \mathbf{s}_{\theta}(\tilde{\mathbf{x}}) + \frac{\tilde{\mathbf{x}} - \mathbf{x}}{\sigma^{2}} \right\|_{2}^{2} \right]$$

$$= \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}} E_{\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})} \left[\left\| \mathbf{s}_{\theta}(\mathbf{x} + \sigma \mathbf{z}) + \frac{\mathbf{z}}{\sigma} \right\|_{2}^{2} \right] \quad \text{(reparameterization trick)}$$

$$= \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}} E_{\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})} \left[\left\| \mathbf{s}_{\theta}(\mathbf{x} + \sigma \mathbf{z}) \right\|_{2}^{2} + 2 \mathbf{s}_{\theta}(\mathbf{x} + \sigma \mathbf{z})^{\mathsf{T}} \frac{\mathbf{z}}{\sigma} + \frac{\left\| \mathbf{z} \right\|_{2}^{2}}{\sigma^{2}} \right]$$

 $\rightarrow \infty$

• If we choose very small $\sigma \rightarrow 0$ Var $\begin{pmatrix} \mathbf{z} \\ - \end{pmatrix}$

We need to tune σ carefully!

Langevin dynamics sampling (Recap)

- Sample from $p(\mathbf{x})$ using only the score $\nabla_{\mathbf{x}} \log p(\mathbf{x})$
- Initialize $\mathbf{x}^0 \sim \pi(\mathbf{x})$
- Repeat for $t \leftarrow 1, 2, \cdots, T$ $\mathbf{z}^{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathbf{x}^{t} \leftarrow \mathbf{x}^{t-1} + \frac{\epsilon}{2} \nabla_{\mathbf{x}} \log p(\mathbf{x}^{t-1}) + \sqrt{\epsilon} \mathbf{z}^{t}$
- If $\epsilon \to 0$ and $T \to \infty$, we are guaranteed to have $\mathbf{x}^T \sim p(\mathbf{x})$
- Langevin dynamics + score estimation $s_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$

Score-based generative modeling: empirical results

Lecture 7, Deep Learning, 2025 Spring

Data points

- Pitfall 1: manifold hypothesis
- Manifold hypothesis.

- Data score is undefined.
- Example
 - The data distribution is a ring
 - What is the score function like?
 - What about the real-world data?

Pitfall 1: manifold hypothesis

- A toy example for the manifold hypothesis
 - Fitting the data with a low-dimensional linear manifold (PCA)

Pitfall 2: challenge in low data density regions

• Let's assume a well defined score function over the entire space

Pitfall 2: challenge in low data density regions

Song and Ermon. "Generative Modeling by Estimating Gradients ^{3/30} of the Data Distribution." NeurIPS 2019.

- Let's further assume that we have learned accurate score functions!
- We may still have issue when p(x) is a multi-modal distribution

Pitfall 3: slow mixing of Langevin dynamics between data modes

• Suppose the data distribution has two disajoint modes:

$$\mathcal{A} \cap \mathcal{B} = \emptyset \qquad p_{\text{data}}(\mathbf{x}) = \begin{cases} \pi p_1(\mathbf{x}), & \mathbf{x} \in \mathcal{A} \\ (1 - \pi)p_2(\mathbf{x}), & \mathbf{x} \in \mathcal{B} \end{cases}$$

 $p_{data}(\mathbf{x}) = \pi p_1(\mathbf{x}) + (1 - \pi) p_2(\mathbf{x})$

• Data score function:

$$\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) = \begin{cases} \nabla_{\mathbf{x}} [\log \pi + \log p_1(\mathbf{x})], & \mathbf{x} \in \mathcal{A} \\ \nabla_{\mathbf{x}} [\log (1 - \pi) + \log p_2(\mathbf{x})], & \mathbf{x} \in \mathcal{B} \end{cases}$$

$$\left\{ \nabla_{\mathbf{x}} [\log(1-\pi) + \log p_2(\mathbf{x})], \quad \mathbf{x} \in \mathcal{B} \right\}$$
$$= \int \nabla_{\mathbf{x}} \log p_1(\mathbf{x}), \quad \mathbf{x} \in \mathcal{A}$$

• The score function has no dependence on the mode weighting π at all!

 $\nabla_{\mathbf{x}} \log p_2(\mathbf{x}), \quad \mathbf{x} \in \mathcal{B}$

• Langevin sampling will not reflect π

Pitfall 3: slow mixing of Langevin dynamics between data modes

Data points

Pitfalls

- Manifold hypothesis. Data score is undefined.
- Score matching fails in low data density regions

 $\nabla_{\mathbf{x}} \log \mathcal{M}_{data}(\mathbf{x})$

Langevin dynamics fail to weight different modes correctly

Song and Ermon. "Generative Modeling by Estimating Gradients ^{3/30} of the Data Distribution." NeurIPS 2019.

75

for Langevin MCMC.

Song and Ermon. "Generative Modeling by Estimating Gradients ^{3/30} of the Data Distribution." NeurIPS 2019.

Multi-scale Noise Perturbation

• Trade-off

• Multi-scale noise perturbations.

 σ_1

3/30

3/30

Trading off Data Quality and Estimation Accuracy

Annealed Langevin Dynamics: Joint Scores to Samples

- Sample using $\sigma_1, \sigma_2, \cdots, \sigma_L$ sequentially with Langevin dynamics.
- Anneal down the noise level.
- Samples used as initialization for the next level.

Comparison to the vanilla Langevin dynamics

Joint Score Estimation via Noise Conditional Score Networks

. .

.

***** * * * * * * * * *

 σ_1

* * * * * * * * *

- Gopyright - IIS, Tsinghua University

 σ_2

Noise Conditional Score Network (NCSN)

* * *

* * *

Training noise conditional score networks

- Weighted combination of denoising score matching losses
 - Given the noise levels $\sigma_1 \dots \sigma_L$

$$\begin{aligned} \frac{1}{L} \sum_{i=1}^{L} \lambda(\sigma_i) E_{q_{\sigma_i}(\mathbf{x})} [\|\nabla_{\mathbf{x}} \log q_{\sigma_i}(\mathbf{x}) - s_{\theta}(\mathbf{x}, \sigma_i)\|_2^2] \\ &= \frac{1}{L} \sum_{i=1}^{L} \lambda(\sigma_i) E_{\mathbf{x} \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\|\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma_i}(\tilde{\mathbf{x}} \mid \mathbf{x}) - s_{\theta}(\tilde{\mathbf{x}}, \sigma_i)\|_2^2] + \text{const.} \\ &= \frac{1}{L} \sum_{i=1}^{L} \lambda(\sigma_i) E_{\mathbf{x} \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\|\mathbf{s}_{\theta}(\mathbf{x} + \sigma_i \mathbf{z}, \sigma_i) + \frac{\mathbf{z}}{\sigma_i}\|_2^2] + \text{const.} \end{aligned}$$

3/30

Choosing noise scales

• Maximum noise scale

 $\sigma_1 \approx \text{maximum pairwise distance between datapoints}$

 \mathbf{X}_2

 σ_1

• Minimum noise scale: σ_L should be sufficiently small to control the noise in final samples. Copyright @ 1115, Tsinghua University 85

Choosing noise scales

- Key intuition: adjacent noise scales should have sufficient overlap to facilitate transitioning across noise scales in annealed Langevin dynamics.
- A geometric progression with sufficient length.

$$\sigma_1 > \sigma_2 > \sigma_3 > \cdots > \sigma_{L-1} > \sigma_L$$

 σ_L

86

 σ_2

Choosing the weighting function

Weighted combination of denoising score matching losses

$$\frac{1}{L}\sum_{i=1}^{L}\lambda(\sigma_i)E_{\mathbf{x}\sim p_{\text{data}},\mathbf{z}\sim\mathcal{N}(\mathbf{0},I)}\left[\left\|\boldsymbol{s}_{\theta}(\mathbf{x}+\sigma_i\mathbf{z},\sigma_i)+\frac{\mathbf{z}}{\sigma_i}\right\|_2^2\right]$$

- How to choose the weighting function $\lambda : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ **Goal:** balancing different score matching losses in the sum $\rightarrow \lambda(\sigma_i) = \sigma_i^2$

$$\begin{aligned} &\frac{1}{L}\sum_{i=1}^{L}\sigma_{i}^{2}E_{\mathbf{x}\sim p_{\text{data}},\mathbf{z}\sim\mathcal{N}(\mathbf{0},I)}\Big[\left\|\boldsymbol{s}_{\theta}(\mathbf{x}+\sigma_{i}\mathbf{z},\sigma_{i})+\frac{\mathbf{z}}{\sigma_{i}}\right\|_{2}^{2}\Big] \\ &=\frac{1}{L}\sum_{i=1}^{L}E_{\mathbf{x}\sim p_{\text{data}},\mathbf{z}\sim\mathcal{N}(\mathbf{0},I)}\Big[\left\|\sigma_{i}\boldsymbol{s}_{\theta}(\mathbf{x}+\sigma_{i}\mathbf{z},\sigma_{i})+\mathbf{z}\right\|_{2}^{2}\Big] \\ &=\frac{1}{L}\sum_{i=1}^{L}E_{\mathbf{x}\sim p_{\text{data}},\mathbf{z}\sim\mathcal{N}(\mathbf{0},I)}\Big[\left\|\boldsymbol{\epsilon}_{\theta}(\mathbf{x}+\sigma_{i}\mathbf{z},\sigma_{i})+\mathbf{z}\right\|_{2}^{2}\Big] \qquad \left[\left\|\boldsymbol{\epsilon}_{\theta}(\cdot,\sigma_{i}):=\sigma_{i}\boldsymbol{s}_{\theta}(\cdot,\sigma_{i})\right\|\right]_{\text{Copyright & HIS, Tsinghua University}} \end{aligned}$$

Training noise conditional score networks

- Sample a mini-batch of datapoints $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\} \sim p_{\text{data}}$ Sample a mini-batch of noise scale indices

$$\{i_1, i_2, \cdots, i_n\} \sim \mathcal{U}\{1, 2, \cdots, L\}$$

- Sample a mini-batch of Gaussian noise $\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\} \sim \mathcal{N}(\mathbf{0}, I)$
- Estimate the weighted mixture of score matching losses

$$\frac{1}{n} \sum_{k=1}^{n} \left[\|\sigma_{i_k} \mathbf{s}_{\theta}(\mathbf{x}_k + \sigma_{i_k} \mathbf{z}_k, \sigma_{i_k}) + \mathbf{z}_k \|_2^2 \right]$$

- Stochastic gradient descent
- As efficient as training one single non-conditional score-based model

Experiments: Sampling

High Resolution Image Generation

OpenPsi @ IIIS

Comparison between NCSN and DDPM

• NCSN • Learning: $\frac{1}{L} \sum_{i=1}^{L} E_{\mathbf{x} \sim p_{\text{data}}, \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\| \boldsymbol{\epsilon}_{\theta}(\mathbf{x} + \sigma_{i} \mathbf{z}, \sigma_{i}) + \mathbf{z} \right\|_{2}^{2} \right] \quad \left[\left\| \boldsymbol{\epsilon}_{\theta}(\cdot, \sigma_{i}) := \sigma_{i} \boldsymbol{s}_{\theta}(\cdot, \sigma_{i}) \right\| \right]$

• Inference:
$$\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\theta}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \mathbf{z}_t$$

- DDPM
 - NCSN with a few enhancements for training stabilities
 - More discussions can be found in the original paper (your homework \odot)

93

Compact representation of infinite distributions

- Stochastic process $\{\mathbf{x}(t)\}_{t=0}^T \rightarrow Marginal probability densities <math>\{p_t(\mathbf{x})\}_{t=0}^T$
- Stochastic differential equation: $d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t)dt + \sigma(t)d\mathbf{w}]$

Infinitesimal white noise

3/30

Score-based generative modeling via SDEs

Data

Score-based generative modeling via SDEs

- Score-based generative modeling via SDEs
- Time-dependent score-based model
- Training:

 $\mathbb{E}_{t \in \mathcal{U}(0,T)} [\lambda(t) \mathbb{E}_{p_t(\mathbf{x})} [\| \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) - \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x},t) \|_2^2]]$

• Reverse-time SDE $\mathrm{d}\mathbf{x} = -\sigma^2(t)\mathbf{s}_{\theta}(\mathbf{x},t)\mathrm{d}t + \sigma(t)\mathrm{d}ar{\mathbf{w}}$

 $\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x},t) \approx \nabla$

Sampling: Euler-Maruyama

$$\mathbf{x} \leftarrow \mathbf{x} - \sigma(t)^2 \mathbf{s}_{\theta}(\mathbf{x}, t) \Delta t + \sigma(t) \mathbf{z} \quad (\mathbf{z} \sim \mathcal{N}(\mathbf{0}, |\Delta t| \mathbf{I}))$$
$$t \leftarrow t + \Delta t$$

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. "Score-Based Generative Modeling through Stochastic Differential Equations." ICLR 2021.

Faster sampling?

Predictor-Corrector sampling methods

- Predictor-Corrector sampling.
 - Predictor: Numerical SDE solver
 - Corrector: Score-based MCMC

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. "Score-Based Generative Modeling 3/30 through Stochastic Differential Equations." ICLR 2021.

98

Results on predictor-corrector sampling

	(
Model	FID↓	IS↑
Conditional	3	6
BigGAN (Brock et al., 2018) StyleGAN2-ADA (Karras et al., 2020a)	14.73 2.42	9.22 10.14
Unconditional		
StyleGAN2-ADA (Karras et al., 2020a) NCSN (Song & Ermon, 2019) NCSNv2 (Song & Ermon, 2020) DDPM (Ho et al., 2020)	2.92 25.32 10.87 3.17	9.83 $8.87 \pm .12$ $8.40 \pm .07$ $9.46 \pm .11$
DDPM++ DDPM++ cont. (VP) DDPM++ cont. (sub-VP) DDPM++ cont. (deep. VP)	2.78 2.55 2.61 2.41	9.64 9.58 9.56 9.68
DDPM++ cont. (deep, vr) DDPM++ cont. (deep, sub-VP) NCSN++ NCSN++ cont. (VE)	2.41 2.41 2.45 2.38	9.08 9.57 9.73 9.83
NCSN++ cont. (deep, VE)	2.20	9.89

High-Fidelity Generation for 1024x1024 Images

Can we further accelerate inference?

- ODE solver still requires iterative computation
 - Can we make it faster?
- Consistency Models: use a neural network for ODE prediction!
 - Given a smooth ODE, learn $f_{\theta}(x_t, t) \rightarrow x_0$ to map to trajectory origin.
 - The mapping over the same trajectory should be consistent
 - Training by distillation (more details can be found in the CM paper)

Song, Dhariwal, Chen, Sutskever. "Consistency Models." ICM 2023. IIIS, Tsinghua University

Can we further accelerate inference?

- Consistency Models: use a neural network for ODE prediction!
 - Given a smooth ODE, learn $f_{\theta}(x_t, t) \rightarrow x_0$ to map to trajectory origin.

Figure 5: Samples generated by EDM (*top*), CT + single-step generation (*middle*), and CT + 2-step generation (*Bottom*). All corresponding images are generated from the same initial noise.

Song, Dhariwal, Chen, Sutskever. "Consistency Models." ICM 2023. IIIS, Tsinghua University

Controllable Generation: class-conditional generation

- y is the class label
- $p_t(\mathbf{y} \mid \mathbf{x})$ is a time-dependent classifier

class: bird

class: deer

Lecture 7, Deep Learning, 2025 Spring

Controllable Generation: inpainting

- **y** is the **masked image**
- $p_t(\mathbf{y} \mid \mathbf{x})$ can be approximated without training

Controllable Generation: colorization

- y is the gray-scale image
- $p_t(\mathbf{y} \mid \mathbf{x})$ can be approximated without training

Controllable Generation: colorization

107

Controllable generation: Text-guided generation

• An astronaut riding a horse in photorealistic style (Dall-E 2)

^{3/30} More on Lecture 12

- A very attractive and natural woman, sitting on a yoka mat, breathing, eye closed, no make up, intense satisfaction, she looks like she is intensely relaxed, yoga class, sunrise, 35mm, F1: 4 (Midjourney v5)
- ppyright @ IIIS, Tsinghua Universit

 Cozy Scandinavian living room, there is a cat sleeping on the couch, depth of field (Midjourney v5)

Build Your Diffusion Model

- Hugging face will be your best friend!
 - Hugging face is a platform for sharing a models
 - Example: Stable Diffusion Model <u>https://huggingface.co/runwayml/stable-diffusion-v1-5</u>
- How to develop your own model?
 - For example, I want to build a model to generating 二次元 images
 - Re-training can be expensive!

Jeees Copyr

We wanted to know how much time (and money) it would cost to train a Stable Diffusion model from scratch using our Streaming datasets, Composer, and MosaicML platform. Our results: it would take us 79,000 A100-hours in 13 days, for a total training cost of less than \$160,000. 2023年1月24日

/umber / AlDOs	Throughput (images / second)	Days to Train on MasaicML Claud	A100-hours	Apprex. Cost on MeasieML Cloud
0	120.2	256.83	49,696	\$99,000
36	254.0	130.63	50,956	\$100,000
32	485.7	68.33	52,470	\$105,000
64	912.2	36.38	55,875	\$10,000
128	1618.4	20.5	62,987	\$125,000
256*	2,589.4	12.83	78,735	\$160,000

https://www.mosaicml.com > blog > training-stable-diffu...

Copyright @ IIIS, Tsingheain/hingerStable Diffusion from Scratch Costs <\$160k - MosaicML 109

Build Your Diffusion Model

- LORA: Low-rank adaptation of large language models (MSR, 2021)
 - Low-rank hypothesis
 - Neural network models with over-parameterization reside in a low intrinsic dimension
 - Fine-tuning can be also performed with a "low-rank" fashion
 - Low-rank decomposition of additive weights
 - Model weights are frozen
 - A is initialized to small Gaussian noise
 - *B* is initialized to zero
 - <u>https://github.com/microsoft/LoRA</u>
 - Lora becomes extremely popular these days ...
 - Some examples on next slide ...

h

OpenPsi @ IIIS

Build Your Diffusion Model: Examples

• Fashion Girl

• Blind Box

But what if I want a fine-grained control beyond text?

Create your own art from text, with your chosen style (Lora)!

- ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models (Stanford, 2023)
 - Let the model also condition on additional signal
 - Example: Canny edge detection
 - <u>https://github.com/lllyasviel/ControlNet</u>

" a man standing on top of a cliff" Copyright @ IIIS, Tsinghua University

"man on hill watching a meteor, cartoon artwork"

- ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models (Stanford, 2023)
 - Let the model also condition on additional signal
 - Example: Human Motion
 - https://github.com/Illyasviel/ControlNet

"astronaut"

OpenPsi @ 111S

3/30

Control Your Model

- ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models (Stanford, 2023)
 - Similar idea to Lora: frozen weight + small adaptation
 - Key techniques:
 - Zero-convolution: 1x1 conv-layer initializes to zero
 - Trainable copy for adaptation initialization
 - Repeated additive for conditioning

Condition

- ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models (Stanford, 2023)
- More ControlNet examples
 - Home designer

After

3/30

- ControlNet: Adding Conditional Cont Models (Stanford, 2023)
- More ControlNet examples
 - Home designer
 - Even video!
 - more in future lectures...

3/30

Summary: Diffusion Model

- Advanced Generative Model
 - Diffusion Model and Score-Based Model
 - Score matching for gradients of log probability
 - Training & Inference (with condition)
 - Noise conditioned network
 - Langevin dynamics and SDE for fast sampling
 - Conditioned generation without the need of retraining
- Frontier AIGC: LORA and ControlNet
 - Hugging Face is your friend

Generative Model (Summary)

- Goal of generative model
 - Learn a distribution p(x) to generate samples and unsupervised learning
- Models so far
 - Energy-based model
 - $p(x) = \frac{1}{z} \exp(-E(x))$, powerful representation but hard to sample
 - Variational auto-encoder
 - p(x,z) = p(z)p(x|z), variational inference as an approximate method
 - Generative adversarial net
 - G(z) and D(x), an implicit model with high generation quality and unstable training
 - Normalizing flow
 - x = f(z), best mathematical properties but the most restricted representation
 - Score-based models
 - $s(x) = \nabla_x p(x; \theta)$, highest generation quality + stable training, but generation is slow

118

Generative Model (Summary)

- Goal of generative model
 - Learn a distribution p(x) to generate samples and unsupervised learning
- Models so far
 - Energy-based model

Coming next: generating data samples beyond images!

- p(x,z) = p(z)p(x|z), variational inference as an approximate method
- Generative adversarial net
 - G(z) and D(x), an implicit model with high generation quality and unstable training
- Normalizing flow
 - x = f(z), best mathematical properties but the most restricted representation
- Score-based models
 - $s(x) = \nabla_x p(x; \theta)$, highest generation quality + stable training, but generation is slow

119

Thanks!

6